Many time-dependent partial differential equations can be expressed as an abstract Cauchy problem
\[u'(t) = (A + B)u, \quad t \geq 0, \quad u(0) = u_0 \] (1)
where the generator of the semigroup is the sum of two operators \(A \) and \(B \). Often the solutions of the sub-problems
\[v'(t) = Av, \quad v(0) = v_0 \]
and
\[w'(t) = Bw, \quad w(0) = w_0 \]
are explicitly known or can be approximated much more efficiently than the solution \(u(t) \) of the full problem (1). In this situation, the Lie-Trotter splitting
\[u(n\tau) = e^{n\tau(A+B)}u_0 \approx (e^{\tau A}e^{\tau B})^n u_0 \] (2)
or the Strang splitting
\[u(n\tau) = e^{n\tau(A+B)}u_0 \approx (e^{\tau B/2}e^{\tau A}e^{\tau B/2})^n u_0 \] (3)
can be applied to approximate the solution of (1) at discrete times \(n\tau \) (\(n \in \mathbb{N} \)), where \(\tau > 0 \) is the step-size and \(e^{tL} \) denotes the semigroup generated by the operator \(L \in \{A, B, A+B\} \).

The goals of this project are

- to prove error bounds for the approximations (2) and (3),
- to show that the assumptions made in the proof allow an application of the methods to the linear Schrödinger equation, and
- to confirm the predicted error behavior by numerical experiments.

Participants who are interested in the third part of the project must be familiar with MATLAB.

Reference:

This article can be downloaded from